Endocannabinoids inhibit transmission at granule cell to Purkinje cell synapses by modulating three types of presynaptic calcium channels.

نویسندگان

  • Solange P Brown
  • Patrick K Safo
  • Wade G Regehr
چکیده

At many central synapses, endocannabinoids released by postsynaptic cells inhibit neurotransmitter release by activating presynaptic cannabinoid receptors. The mechanisms underlying this important means of synaptic regulation are not fully understood. It has been shown at several synapses that endocannabinoids inhibit neurotransmitter release by reducing calcium influx into presynaptic terminals. One hypothesis maintains that endocannabinoids indirectly reduce calcium influx by modulating potassium channels and narrowing the presynaptic action potential. An alternative hypothesis is that endocannabinoids directly and selectively inhibit N-type calcium channels in presynaptic terminals. Here we test these hypotheses at the granule cell to Purkinje cell synapse in cerebellar brain slices. By monitoring optically the presynaptic calcium influx (Ca(influx)) and measuring the EPSC amplitudes, we found that cannabinoid-mediated inhibition arises solely from reduced presynaptic Ca(influx). Next we found that cannabinoid receptor activation does not affect the time course of presynaptic calcium entry, indicating that the reduced Ca(influx) reflects inhibition of presynaptic calcium channels. Finally, we assessed the classes of presynaptic calcium channels inhibited by cannabinoid receptor activation via peptide calcium channel antagonists. Previous studies established that N-type, P/Q-type, and R-type calcium channels are all present in granule cell presynaptic boutons. We found that cannabinoid activation reduced Ca(influx) through N-type, P/Q-type, and R-type calcium channels to 29, 60, and 55% of control, respectively. Thus, rather than narrowing the presynaptic action potential or exclusively modulating N-type calcium channels, CB1 receptor activation inhibits synaptic transmission by modulating all classes of calcium channels present in the presynaptic terminal of the granule cell to Purkinje cell synapse.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cannabinoids modulate the P-type high-voltage-activated calcium currents in purkinje neurons.

Endocannabinoids released by postsynaptic cells inhibit neurotransmitter release in many central synapses by activating presynaptic cannabinoid CB1 receptors. In particular, in the cerebellum, endocannabinoids inhibit synaptic transmission at granule cell to Purkinje cell synapses by modulating presynaptic calcium influx via N-, P/Q-, and R-type calcium channels. Using whole cell patch-clamp te...

متن کامل

Calcium dependence of retrograde inhibition by endocannabinoids at synapses onto Purkinje cells.

Many types of neurons release endocannabinoids from their dendrites in response to elevation of intracellular calcium levels. Endocannabinoids then activate presynaptic cannabinoid receptors, thereby inhibiting neurotransmitter release for tens of seconds. A crucial step in understanding the physiological role of this retrograde signaling is to determine its sensitivity to elevations of postsyn...

متن کامل

Mechanism and kinetics of heterosynaptic depression at a cerebellar synapse.

High levels of activity at a synapse can lead to spillover of neurotransmitter from the synaptic cleft. This extrasynaptic neurotransmitter can diffuse to neighboring synapses and modulate transmission via presynaptic receptors. We studied such modulation at the synapse between granule cells and Purkinje cells in rat cerebellar slices. Brief tetanic stimulation of granule cell parallel fibers a...

متن کامل

Control of neurotransmitter release by presynaptic waveform at the granule cell to Purkinje cell synapse.

The effect of changes in the shape of the presynaptic action potential on neurotransmission was examined at synapses between granule and Purkinje cells in slices from the rat cerebellum. Low concentrations of tetraethylammonium were used to broaden the presynaptic action potential. The presynaptic waveform was monitored with voltage-sensitive dyes, the time course and amplitude of presynaptic c...

متن کامل

Contributions of calcium-dependent and calcium-independent mechanisms to presynaptic inhibition at a cerebellar synapse.

Activation of either adenosine A1 receptors or GABAB receptors inhibits many excitatory synapses in the mammalian brain. However, the extent to which different mechanisms contribute to such synaptic modulation is unclear. We examined the manner in which activation of adenosine A1 receptors and GABAB receptors modulates synaptic strength at the granule cell to Purkinje cell synapse in rat cerebe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 24 24  شماره 

صفحات  -

تاریخ انتشار 2004